composition clearly calls for more than one oxidation state. The existence of three different oxidation states is highly unlikely. However, KCr_3O_8 contains both Cr(III) and Cr(VI) (Wilhelmi, 1958), and the bond lengths in Ba₂Cr_{6.5}O₁₄ are consistent with Cr(III) in the octahedral sites and Cr(VI) in the tetrahedral sites. With this assumption, charge balance requires that some cation sites be unoccupied, which is consistent with the reduced occupancy factor found for chromium in the tetrahedral sites.

The sum of electrostatic bond strengths assuming the above oxidation states and occupancy is given in Table 2. The value of $2\frac{5}{8}$ to O(3) is, of course, quite high. It should be noted, however, that where a chromium atom has bonds to O(3), these bonds are appreciably longer than its bonds to O(2) or O(1): Cr(1)-O(2)= 1.93 vs. Cr(1)-O(3)=1.97; Cr(3)-O(1)=1.64 vs. Cr(3)-O(3)=1.71. The bond lengthening would, in effect, decrease the high sum of electrostatic bond strengths.

Atomic parameters are listed for initial and final positions in Table 1. The maximum shift to error ratio in the final cycle was 0.035. Table 3 lists some interatomic distances and bond angles, and Table 4 lists observed and calculated structure factors.

A stereoscopic view of the barium coordination is shown in Fig. 2. The coordination of the three types of chromium, [Cr(1) is ^{v1}Cr(III), Cr(2) is ^{v1}Cr(III), and Cr(3) is ^{IV}Cr(VI)], is shown in Fig. 3. The authors are grateful to Dr B. L. Chamberland for the crystals used in this study and for helpful discussions. Financial assistance was provided by the National Science Foundation through grant GP 8481. Computations were carried out in the Computer Center of the University of Connecticut, which is supported in part by grant GJ-9 of the National Science Foundation. Photographs of the Figures and the table of structure factors were prepared by the University of Connecticut Photographic Laboratory.

References

- ANSELL, G. B. & KATZ, L. (1966). Acta Cryst. 21, 482.
- CHAMBERLAND, B. L. (1969). Inorg. Chem. 8, 286.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- GALASSO, F. & KATZ, L. (1961). Acta Cryst. 14, 647.
- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KATZ, L. & WARD, R. (1964). Inorg. Chem. 3, 205.
- LONGO, J. M., KATZ, L. & WARD, R. (1965). *Inorg. Chem.* 4, 235.
- MCCARROLL, W. H., KATZ, L. & WARD, R. (1957). J. Amer. Chem. Soc. 79, 5410.
- SHANNON, J. & KATZ, L. (1970). Acta Cryst. B26, 102.
- STEWART, J. M. (1967). X-RAY 67 Program System, University of Maryland, College Park, Maryland.
- WILHELMI, K. -A. (1958). Acta Chem. Scand. 12, 1965.

Acta Cryst. (1972). B28, 1223

The Crystal Structure of 3-Phenyl-2,4-(1H,3H)-quinazolinedione

BY YUKISHIGE KITANO, MICHIO KASHIWAGI, AND YUKIO KINOSHITA*

Basic Research Laboratories, Toray Industries, Inc. 1111, Tebiro Kamakura, 248, Japan

(Received 17 August 1971)

The crystal structure of 3-phenyl-2,4-(1*H*, 3*H*)-quinazolinedione, $C_{14}H_{10}N_2O_2$, has been determined from three-dimensional photographic data. The crystals are monoclinic and the space group is $P_{2,1}/c$ with four molecules in the unit cell. The axial parameters are $a = 5.799 \pm 0.002$, $b = 8.339 \pm 0.009$, c = 22.962 ± 0.007 Å, and $\beta = 94.16 \pm 0.04^\circ$. The structure was deduced from a sharpened Patterson synthesis and refined by means of the block-diagonal least-squares method to the final *R* index of 0.104 for 2255 independent non-zero reflexions. The molecules are placed in pairs around a centre of symmetry, connected by two C=O···H–N hydrogen bonds of length 2.821 Å. The quinazoline rings are superimposed at the intervals of 3.5 Å along the *b* axis, with their long axes approximately parallel to the [001] direction. The benzene ring is rotated by 65.0° from the quinazoline ring because of the steric effect of the two carbonyl groups.

Introduction

3-Phenyl-2,4(1H, 3H)-quinazolinedione is a model compound of polyquinazolinedione, one of the poly-

mers having the properties of thermal stability and solubility in polyphosphoric acid and organic polar solvents, which were prepared by the cyclopolycondensation reaction of the open-chain precursor (Tohyama, Kurihara, Ikeda & Yoda, 1967; Yoda, 1968, 1969). It was prepared by the reaction of anthranilic acid and phenyl isocyanate in the presence of polyphosphoric acid (PPA) (Kurihara & Yoda, 1965, 1966).

^{*} Present address: Aichi Laboratory, Toray Industries Inc., Nishiku, Nagoya, Japan.

It crystallizes in two modifications, namely a stable form from ethanol solution, and an unstable form from methanol solution, the latter being monoclinic with cell parameters:

 $a = 7.45 \pm 0.05, b = 8.81 \pm 0.02, c = 15.26 \pm 0.05 \text{ Å}, \beta = 103.1 \pm 0.5^{\circ}.$

The present paper describes the refinement and crystal structure of the stable form of the molecule.

Experimental

Single crystals of 3-phenyl-2,4-(1H, 3H)-quinazolinedione were grown by slow evaporation at room temperature of an ethanol solution. They were plates tabular on (100) elongated in the **b** direction. The cell dimensions were obtained by a least-squares procedure from the measurements on Weissenberg photographs around the *a* and the *b* axes. The density was measured by flotation in an aqueous solution of sodium acetate at 25°C.

Crystal data

3-Phenyl-2,4(1*H*,3*H*)-quinazolinedione, $C_{14}H_{10}N_2O_2$ Molecular weight, 238·1, m. p. 280°C.

Monoclinic

a = 5.799 ± 0.002 Å b = 8.339 ± 0.009 c = 22.962 ± 0.007 β = $94.16 \pm 0.04^{\circ}$ V = 1154.36 Å³ $D_m = 1.369$, $D_x = 1.370$ g.cm⁻³ for Z=4 Systematic absences, hol with l = 2n + 1 0k0 with k = 2n + 1Space group $P2_1/c$ (No. 14, C_{2h}^5) Absorption coefficient for Cu K α : $\mu = 7.9$ cm⁻¹.

Three-dimensional intensity data were collected from the equi-inclination Weissenberg photographs taken with Ni-filtered Cu $K\alpha$ radiation. The multiple-film technique was used and zero to the fifth layers about both the *a* and *b* axes were recorded. The intensities were estimated visually by comparison with a calibrated intensity scale prepared from the same crystal. The usual Lorentz and polarization factors were applied to 2255 independent intensities to yield relative structure factors. The crystals used for the intensity measurements were cut to dimensions $0.35 \times 0.15 \times 0.15$ mm for the *a* axis, and $0.12 \times 0.27 \times 0.15$ mm for the *b* axis, and no corrections were made for the small absorption errors.

Structure determination and refinement

The length of the c axis and the sharpened Patterson projection P(U0W) made it almost certain that the molecule was nearly fully extended, with its long axis elongated in the c direction. As a first approximation in interpreting the structure, it was assumed that the molecule was almost coplanar. Two pairs of hexagonal patterns of the peaks near the origin of the Patterson projection shown in Fig. 1 indicated that the plane of the molecule would be tilted to some extent from the (010) plane and the long axis tilted about 10° from the [001] direction. Among several models tried, one, also shown in Fig. 1, was adopted by considering the relative heights of the peaks.

With the orientation of the nucleus fixed, an attempt

Fig. 1. (a) Sharpened Patterson projection P(U0W), with origin peak removed. Contours are drawn at arbitrary intervals. (b) Interpretation of (a): relative orientation of molecule. The scale is one half of (a).

Fig. 2. Composite drawing of the final electron density map viewed along the *b* axis. Contours are drawn at intervals of 1 e.Å⁻³. The zero line is dotted.

Fig. 3. Electron density peaks associated with the hydrogen positions. Contours are drawn at intervals of 0.2 e.Å-3, starting at 0.2 e.Å⁻³.

was made to locate the molecules relative to the origin. The molecules were assumed to be joined together in pairs by hydrogen bonds around the centre of symmetry. Several kinds of packing were considered with the aid of molecular models and successive structure factor and Fourier calculations based on 119 h0l reflexions provided an approximate solution of the structure. A further least-squares refinement with a uniform isotropic temperature factor B = 3.5 Å² reduced the R index to 0.301 from 0.381.

After obtaining approximate values for the x and zcoordinates, the sharpened Patterson projection down the *a* axis was calculated to determine the *y* parameters. As a result, no further practical information about the location of the molecule was obtained from the P(0VW)map in which most of the vectors overlapped to a great extent. Attention was then turned to the three-dimensional sharpened Patterson synthesis. The concentration of the vector peaks in the plane through the origin, which is approximately parallel to the $(1\overline{2}1)$ plane suggested the orientation of the molecules in sheets. The strong $1\overline{2}1$ reflexion further supported the orientation. To interpret the distribution of the vector peaks, two possible models which are different in the z coordinates were constructed on the basis of the assumption that the two molecules related by a centre of symmetry are hydrogen bonded, and with the aid of the two-dimensional refinement. The structure factor calculation using the 809 reflexions having sin $\theta/\lambda \le 0.5$ resulted in an R index of about 0.60 for one model and 0.52 for the other. A further least-squares refinement of the positional parameters yielded no significant improvements in either models. Accordingly a further assumption was made on the latter model that the benzene ring coordinated to the nitrogen atom did not lie on the same plane of the quinazoline ring because of the steric effect of the two carbonyl groups. By the rotation of the benzene ring by about 90° to the quinazoline ring plane the R index decreased to 0.44. Four cycles of leastsquares refinement made the angle decrease successively and the R index reduced from 0.33 to 0.27, 0.22 and 0.16. The peaks on the Fourier synthesis calculated at this stage were well resolved and thus this model

was considered to be reasonable. The next least-squares computations were based on the complete set of threedimensional data and three cycles of refinement using individual isotropic temperature factors and allowing variation of all positional parameters reduced the Rindex from 0.230 to 0.202. Inspection of the calculated curvatures of the atomic peaks showed some anisotropy. After four cycles of positional and anisotropic ther-

Table 1. The atomic coordinates of 3-phenyl-2,4(1H, 3H)quinazolinedione

Standard deviations are in parentheses.

	x/a	y/b	z/c
C(1)	0.1976 (4)	0.0985 (4)	-0.0605(4)
C(2)	0.4221(5)	0.2208(4)	0.0216 (4)
C(3)	0.4469(5)	0.2475 (5)	0.0820 (5)
C(4)	0.6341 (6)	0.3339 (6)	0.1053 (6)
C(5)	0.7993 (6)	0.3962 (5)	0.0689 (6)
C(6)	0.7699 (5)	0.3718 (6)	0.0091 (5)
C(7)	0.5811 (4)	0.2849 (4)	-0.0146(4)
C(8)	0.5438 (4)	0.2634 (4)	-0.0785(4)
C(9)	0.3087 (4)	0.1429 (5)	-0.1596(4)
C(10)	0.4688 (6)	0.0560 (6)	-0.1880(5)
C(11)	0.4186 (5)	0.0288 (8)	-0.2488(6)
C(12)	0.2230 (6)	0.0929 (7)	-0.2781(7)
C(13)	0.0715 (6)	0.1847 (5)	-0.2482(6)
C(14)	0.1132 (5)	0.2114 (6)	-0.1882(5)
N(1)	0.3538 (4)	0.1697 (4)	-0.0972(5)
N(2)	0.2388 (4)	0.1310 (4)	-0.0021(4)
O(1)	0.0397 (5)	0.0149 (4)	-0.0786(4)
O(2)	0.6655 (4)	0.3236 (4)	-0.1133(4)
H(1)	0.179	0.055	0.021
H(2)	0.338	0.236	0.112
H(3)	0.629	0.351	0.144
H(4)	1.001	0.394	0.083
H(5)	0.823	0.429	-0.018
H(6)	0.611	0.016	-0.165
H(7)	0.557	-0.045	-0.266
H(8)	0.200	0.060	-0.317
H(9)	-0.042	0.268	-0.269
H(10)	0.024	0.297	-0.168

Table 2. Thermal parameters $(Å^2)$ for the expression $\exp\left[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl)\right].$

All values are multiplied by 104. Standard deviations are given in parentheses. An isotropic temperature factor B = 2.5 (Å²) was assigned to all hydrogen atoms.

	<i>B</i> ₁₁	B ₂₂	B ₃₃	B_{12}	B_{13}	B ₂₃
C(1)	204 (8)	91 (4)	9 (2)	-8(8)	52 (4)	15 (2)
C(2)	196 (5)	83 (4)	8 (2)	45 (8)	47 (4)	18 (2)
C(3)	262 (8)	122 (4)	10 (2)	56 (7)	33 (3)	13 (2)
C(4)	318 (8)	162 (4)	11 (2)	57 (8)	27 (4)	12 (5)
C(5)	312 (7)	184 (5)	12 (2)	-42(9)	16 (5)	4 (5)
C(6)	232 (6)	145 (5)	12 (2)	-47 (6)	25 (4)	-3 (2)
C(7)	193 (5)	85 (5)	10 (2)	17 (6)	38 (4)	5 (2)
C(8)	163 (5)	94 (4)	8 (2)	-6(7)	48 (5)	11 (2)
C(9)	222 (7)	90 (5)	8 (2)	- 53 (7)	56 (4)	5 (2)
C(10)	336 (7)	117 (5)	12 (2)	87 (8)	78 (4)	9 (2)
C(11)	490 (9)	151 (4)	12 (2)	53 (9)	105 (3)	-4 (4)
C(12)	376 (6)	181 (4)	12 (2)-	- 140 (9)	36 (4)	-20(4)
C(13)	277 (6)	238 (4)	13 (2)	-97 (9)	-8(4)	-19(5)
C(14)	205 (5)	159 (5)	13 (2)	-44 (6)	26 (4)	-3(5)
N(1)	187 (5)	94 (5)	7 (2)	-35 (5)	43 (2)	9 (2)
N(2)	216 (5)	108 (4)	8 (2)	- 51 (5)	54 (2)	12 (2)
O(1)	270 (5)	140 (5)	10 (2)-	- 205 (5)	47 (2)	6 (2)
O(2)	213 (5)	140 (4)	10 (2) -	-114 (5)	51 (2)	12 (2)

mal parameter refinement the R index decreased to 0.132. A difference Fourier synthesis, using structure factors calculated without hydrogen atoms, clearly showed the presence of the ten hydrogen atoms with the restriction that the peak for H(3) appeared to be anomalously large. The hydrogen atom positions were obtained from the maxima of these peaks. Inclusion of the hydrogen atom contributions to the structure factors reduced the overall agreement index to 0.104

including all non-zero reflexions. Refinement was terminated when nearly all of the parameter shifts were less than the standard deviations. Throughout the refinement of the structure, equal weights were employed for all reflexions and the atomic scattering factors were adopted from *International Tables for X-ray Crystallography* (1962). Composite drawings of the final Fourier and difference maps with atomic levels are shown in Figs. 2 and 3. The fractional coordinates

THE REAL PROPERTY IN MERCINE

Table 3. Observed and calculated structure factors

The running indices are h, k; the value for l immediately precedes the group. The central column is 10 $|F_0|$, the right-hand column 10 F_c .

000001111111111222222222222222222222222	n	H
= 1 24681012345678910123456789101234567890123456789012345678901235670202 L 12345678901234567890123456789012345678901	~	ĸ
0 628 577 715 772 229 229 229 220 220 220 220 22	NPOB	KEOP
- 643 - 71 - 74 - 71 - 72 - 73 - 74 - 72 - 73 - 74 - 75 - 75 - 75 - 75 - 75 - 75 - 75 - 75	FUAL	PCAL
222222222233333333333333333333333333333	2	н -
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	7 48 -48	K KFOB PCA
- 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	-1	1. PL
345678901234567890012345678900123456789001234667890123456789012345678912345678901234567890123456701234567012340123401234020	2 1	K K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 897	FUB FLAL
000000011111111111111111111111111111111	•	n
$ \begin{array}{c} 2 & 102\\ 3 & 1 & 142\\ 4 & 142\\ 5 & 6 & 7 \\ 8 & 7 & 8 \\ 8 & 8 & 8 \\ 8 & 8 & 8 & 8 \\ 8 & 8 &$	1 120	h hru
90 7 130 9 - 212 8 - 416 9 - 212 8 - 416 9 - 168 9 - 169 9	- 126	
6666667 00000000000001111111111111111111	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16	
31 9 - 57 - 44 - 44 - 57 - 44 - 59 - 200 -	- 20	
-4 4 9 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 1 2 3 4 0 2 2 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	-4 7	
942666883550111448355555244988552559115248455685339225591718427252884562652917155555244988552597552449885555524498855552524498855552258845655552449885555225884565555244988555522559111468655555225591114686525552255911146865225591114686522559111468652255911146865225591114686522559111468522559111468522559111114652255911111452559111114525591111145255911111452559111114525259111114525591111114525591111145255911111452559111114535225591111145352255911111453522559111114535225591111145352559111114535259111114535259111114535259111114535259111114535259111114535259111111453525911111453525911111453525911111114535259111111453525591111111453525911111145352591111114535259111111145352591111111111111111111111111111111111	10	
- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	J	
	ر .	
1 2 3 4 5 6 7 8 9 1 2 3 4 4 5 6 7 1 2 3 4 7 1 2 3 4 7 1 2 3 4 7 1 2 3 4 7 1 2 3 4 7 1 2 3 4 7 1 2 3	9	
$\begin{array}{c} 5 \\ 5 \\ 7 \\ 127 \\$	4	
333333333444444444444444444444444444444	3	
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	2 104	
252 252 252 251 252 251 252 252	81	

Table 3 (cont.)

H 2222-22-22-22-22-22-22-22-22-22-22-22-2	н
K 8912345678801123456787123456789123456712345678123456712345671212342 . UI2345678900123456789001234567890012345678	к
$ \begin{array}{c} {\bf KFOB} \\ {\bf 38} \\ {\bf 8} \\ {\bf 453} \\ {\bf 342} \\ {\bf 333} \\ {\bf 333} \\ {\bf 342} \\ {\bf 333} \\ {\bf 342} \\ {\bf 333} \\ {\bf 342} \\ {\bf 333} \\ {\bf 364} \\ {\bf 166} \\ $	KFOB
PC AL 4 4 5 8 4 4 17 4 4 5 8 4 4 17 4 4 5 8 4 4 17 4 4 5 8 4 8 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 5 5 5 1 1 6 8 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	FCAL
H 22222222222222222222222222222222222	н
K 9101235678910123456789101234567891012345678901234567890123456701234567012345670123456701201234567890124	к
$ \begin{array}{c} {\sf KFOB} \ \ {\sf FCAL} \\ 9 \ \ -182 \\ 222 \ \ -176 \\ 122 \ \ -182 \\ 222 \ \ -176 \\ 122 \ \ -182 \\ 122 \ \ -182 \\ 122 \ \ -182 \\ 122 \ \ -182 \\ 122 \ \ -182 \\ 122 \ \ -182 \\ 122 \ \ -183 \\ 122 \ \ -183 \\ 122 \ \ -183 \\ 123 \ \ -193 \\ 104 \ \ -99 \\ 9 \\ 133 \ \ -52 \\ 104 \ \ -99 \\ 133 \\ 104 \ \ -99 \\ 133 \\ 104 \ \ -99 \\ 133 \\ 104 \ \ -99 \\ 133 \\ 104 \ \ -99 \\ 133 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -193 \\ 104 \ \ -104 \\ 105 \ \ -76 \\ 105 \ \ -104 \ \ -104 \\ 105 \ \ -104 \\ 105 \ \ -104 \ \$	KFOB FCAL
H	н
K 45678901234567890123456789123456789123456789123456789123456789123456789123456712345678123456123456123456721242 L 01234567890	к
KFOB B 1311 118 191311 118 19222 2422 19333 2222 19333 2222 19333 2222 19333 2222 19333 2222 19333 2222 19333 2222 19333 2222 19333 222 19333 222 1111 112 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 111 1111 1111 1111	кгов
$ \begin{array}{c} \mathbf{FC} \ \mathbf{AL} \\ \mathbf{I46} \ \mathbf{3-3} \ 3 \\ \mathbf{-3.3} \\ \mathbf{-3.1} \\ \mathbf{-3.1}$	FC AL
H	н
1 012345678900123456780012345678901234567890123456789012345678901234567790123456770123456780123456780123456780123456780012345678001234567800123456780012345678001234567800123456780012345678001234567800012345678000000000000000000000000000000000000	к
	KEOB FOAL
H 0000000001111111111111111111111111111	н
K L 12345678901123456789123345678	кк
1 1 1 1 1 1 1 2 3 2 3 2 2 2 2 4 2 4 4 5 4 3 7 7 7 5 8 1 5 4 3 2 5 6 4 3 2 5 6 1 5 3 1 9 1 5 2 5 6 1 5 1 5 7 1 9 1 5 2 5 4 5 9 7 1 9 3 5 2 5 4 5 6 6 9 7 9 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 5 6 4 5 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	FOR
FC AL 2977 L 30 3 3 3 3 1 3 1 3 5 3 4 3 1 3 5 3 1 2 3 3 3 3 3 1 3 0 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 5 3 1 2 3 1 3 1 3 1 2 3 5 3 1 2 3 1 3 1 3 1 2 3 1 3 1 3 1 2 3 1 3 1	FC AI
H 0000000111111111111111111111111111111	. н
Κ ΙΖ 5 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0 1 2 3 4 5 7 8 0	к
$ K = \frac{1}{100} + \frac{1}{100} +$	KFOE
$ \begin{array}{c} 1 \\ \mathbf$	FCAL
H 66666 00000001111111111111111111111111	н
K 1234 L 12343 e78912343678912343678912343678912343678912343677891234367812343678123436781234367812343678123436 • •	к
$ \begin{array}{c} E \\ E $	EFO
8 K - 755 5 111 - 999 2 887 154 2 5 1 6 9 40 3 5 6 4 7 5 4 8 5 4 5 5 8 5 4 5 5 7 5 4 5 4 5 5 7 5	в рели
· · · · · · · · · · · · · · · · · · ·	
1 1))))))) 	
$ \begin{array}{c} \mathbf{K} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} y$. KF0
IB F -222 -232 -232 -314 F -232 -314 -324 -314 -324 -314 F -232 -314 -324 -314 -324 -314 -324 -314 -324 -314 -324 -344	BFC
	AL.

and anisotropic thermal parameters, along with their standard deviations are listed in Tables 1 and 2 respectively, and the final observed and calculated structure factors are given in Table 3.

Results and discussion

Dimensions of the molecule

The intramolecular bond lengths and valence bond angles of the molecule are listed in Table 4 and shown in Fig. 4. The benzene ring has mean a carbon bond distance of 1.396Å and a mean angle of 120.0° ; values range

A C 28B 16

from 1.384 to 1.423 Å and from 116.8 to 123.1° . These values are quite reasonable. The six-membered carbon ring of the quinazoline ring also has a reasonable mean carbon bond distance of 1.394 Å and a mean angle of 120.0° , values ranging from 1.378 to 1.415 Å and from 119.2 to 120.7° . The carbon–carbon bond distance of 1.478 Å in the heterocyclic ring may be compared with 1.475 Å for tricycloquinazoline (Iball & Motherwell, 1969). The mean nitrogen–carbon bond distance of 1.389 Å is similar to those usually observed in heterocyclic rings, for instance, dihydrothymidine (Konnert, Karle & Karle, 1970), dihydrouracil (Rohrer &

3-PHENYL-2,4-(1H,3H)-QUINAZOLINEDIONE

Table 3 (cont.)

Ħ	ĸ	KPOB	FCAL	H	ĸ	KPOB	FCAL	. н	к	KF0 B	FC LL H	к	KFOB FCAI	. н	к	KFOE	FCAL	н	к кър	DB FCA	LH	к	NFOB	FC AL	н	ĸ	1
	45678	42 41 198 8 85	45 -29 -191 -11 103	1 1 1 1	0 1 2 3 4	204 65 106 29 101	168 68 -106 23 -97	1 1 -1 -1	6 7 8 1 2	144 57 36 74 353	136 2 -58 -2 -39 -2 65 -2 -354 -2	8 0 1 2 3	45 -60 858 -939 194 -215 229 208 103 -94	4 -4 -4 -4	2 3 1 2 4	51 34 28 255 155	48 - 37 - 27 - 239 1 32	-1 2 2 2 2	5 38 1 76 2 80 3 12 4 55	- 38 - 81 - 85 20 43	0 0 0 0	2 3 4 5 6	48 24 38 5	- 46 - 38 25 - 14	1 -1 -1 -1	3 1 2 3	
1	1234	14 86 39 63	8 -65 41 -48	1 1 -1	6 7 8 0	20 27 22 121	22 34 20 112	-1 -1 -1 -1	3456	279 236 90 10	-301 -2 220 -2 -83 -2 15 -2	4567	32 22 14 -22 25 -14 47 -50	-4 -5 -5	5 2 1 2	13 72 29 13	-1 70 30 -11	2 - 2 - 2 - 2	6 6 1 32 2 79 3 76	10 27 74 64	1	1 2 3 5	12 73 66 7	9 57 57 - 26	-1 -1 2 2	4 5 1 2	
1	5678	14 134 9 52	11 157 18 55	-1 -1 -1 -1	1 2 3 4	58 366 45 34	61 -365 -30 32	-1 2 2 2	7 1 2 3	35 12 40 100	42 -2 -7 3 -28 3 -108 3	8 0 1 2	54 -62 52 -38 108 107 31 -26	o	L : 0	20 30	17	-2 -2 -2 -2	4 115 5 65 6 93 7 5	101 52 -86	1 -1 -1 -1	6 1 2 3	5 36 157 87	-5 23 162 70	2 - 2 - 2	3 4 1 2	
-1	23	18 134 129 100	28 107 -136 -75	-1 -1 -1 -1	5 6 7 8	79 10 9 22	- 79 - 10 - 22 34	2 2 2 2 2	4 5 6 7	91 80 9 8	61 3 81 3 27 3 2 3	3 4 5 6	36 26 49 44 9 14 34 40	0000	1 2 3 4	12 13 21 187	11 6 - 42 - 196	3 3 3 3	1 25 2 12 3 32 4 41	- 26 5 - 50 - 34	-1 -1 2 2	4512	39 71 11 82	-36 47 2 -83	-2 -2 -2 3	3 4 5 1	
	567	101 58 32	103 -60 -39	2 2 2	0	192 111 61	191 -102 -49	-2 -2 -2	234	49 111 100 87	-44 3 -103 -3 83 -3 -90 -3	7 0 1 2	5 -2 305 277 280 293 273 -294	0000	5678	44 151 32 3	- 3 i 159 - 36 - 34	-3 -3	5 25 1 82 2 42 3 t5	25 - 81 34 - 58	- 2	4	69 49 42	-43 22	- 3 - 3 - 3	1 2 3	
-1 2 2 7	9123	57 366	40 48 -380	2 2 2 2	34567	117 41 9	124 38 15	-2 -2 3	5 6 8 1	24 57 76	-15 -3 -58 -3 60 -3	34567	87 70 14 -6 13 -1 38 -32	1 1 1 1	1 2 3	129 111 41	-148 -128 40	-3 -3 -4	4 13 5 43 6 6 1 7	42 1 3	-2 -2 -2	3456.	101 10 37	81 7 - 34	-4	1 2	
2227	4 5 6 7	168 14 17	147 23 -9	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -	8 0 1	22 281 338	-26 -291 -359	333	345	13 21 10	18 4 18 4 10 4	0	22 17 25 3 11 24 15 -44	1	15 670	83 128 6	73 -144 -4	-4	3 31 1 54 2 14 4 97	41 4 93	333	2 3 4	11 47 71	11 - 52 - 88	0	0	
-2 -2 -2 -2 -2	8 1 2 3	7 58 51	12 -54 -26 -113	-2 -2 -2	3456	87 60 107	81 - 42 98 79	3 - 3 - 3	7 1 2 3	18 320 253	-11 4 -372 -4 261 -4	4 0 1	71 58 98 90 62 60	-1 -1 -1	1 2 3	26 319 130	- 10 - 298 - 120	-5	1 49 2 c1	- 63 57 - 61	- 3	2 3 4 5	109 58 14	94 60 11	0	3 5 0	
-2 -2 -2 -2	4 5 6 7	33 14 116 9	20 - 3 102 7	-2 -2 3 3	7 8 0	27 128 308 71	- 26 - 1 32 - 326 - 66	- 3 - 3 - 3	4 5 6 7	52 115 78	-44 -4 -123 -4 -92 5	4 5 2	249 -227 87 -74 19 22	-1 2 2 2	5012	44 79 47 82	42	0	0 122	-14r 94	4	1 1 2 3	31 79 12	-51 8t -15 -28	-1	2 3 0	
-2 -2 3	8912	67 5 49 225	-68 -20 -35 201	3333	2345	174 13 72	145 11 59	4	1 2 3 4	30 92 48	36 -5 82 -5 -40 -5	0	72 - 64 42 - 49 78 - 63	2 2 2	346	13	- 38	000	3 11 4 23 6 6	21 - 25 - 30	- 4	4 L:	125 24	-135	-1	2 3 4	
3 3 3	345	63 14 23	64 -18 3	3 3 -3	670	33 41 13	38 -46 2	- 4	6 1 2	35 77 49	-40 -5 87 -6 -30	5 0	97 94 43 44	-2 -2 -2	012	227 39 91	- 250 39 85	1 1 1	1 E9 2 86 3 41	- 83 - 85 - 35	0 0 0	1 2 3	29 29 36	- 35	2		
3 -3 -3	7812	20 5 12 31	24 9 7	-3 -3 -3	2345	241 131 178	-259 -121 111	-4	567	13 84	19 -73 0 6 0	1 2 2	£5 -76 13 -8	-2	5 4 5 1	47 13 8	- 1 12 - 13	1 - 1	5 8	-1 -1 -12t	0	3 0	34 20 03	14	- 2 - 2 - 2	2 3 4	
-3 -3 -3	3454	54 35 39	49 42 39	-3 -3 -3	6 7 8 0	105 37 21	-120 -50 20	5-5	34	8 49 76	-5 0 44 0 -78 0	4 5 t	248 215 141 -139 200 -207	3	012	63 53	-49 48 -c7	-1 -1 -1	2 17 3 1e 4 1e2	-96 10 127	1	2	2: 11 42	-2t -2t 47	د د - ز -	0 0 1	
-3	7 8 1	35 19 67	-42 -22 77		1 2 3	31 77 62	- 17 - 69 53	- 5 - 5 - 6	451	9£ 109 28	-108 0 -98 1 -21 1	8	38 53 2t - 30 41 - 29 69 - 55	333	3 4 5 6	12 29 6	9 - 30 - 19	2 2 2	5 102 0 69 1 31 2 10	- 5t 34 14	-1 -1 -1	1 2 3	31 14 73	30 14 84 - 24	υ	L : !	2
	345	70 47 45	70 - 30 - 40	-	6 0 1	6 131 14	-10 -124 8	0	L O	= 18 36	-39 1	3 4 5 7	33 - 20 51 44 90 - 79 52 - 65	- 3 - 3 - 3	1 2 3	327 78 113 22	333 - 70 - 114 - 23	2 2 - 2	3 47 4 55 6 34 0 10	-47 -50 -3t 2t	- 1 - 2 - 2	4 5 0 1	14 91 11 58	- 8 7e - 8 43	0 0 1	2 3 4	
-4	1 2 3	55 137 142	-58 150 -130	-4	4 5 6	331 80 58	-311 -70 38	0	1 2 3 4	29 13 55 362	13 -1 24 -1 -55 -1 -416 -1	1 2 3 4	42 -19 358 -329 33 -30 33 80	- J - J - J	4 5 0	82 12 22 101	-71 -11 19 -99	- 2 - 2 - 2 - 2	1 46 2 41 3 13 4 39	49 25 11 24	2 2 - 2	2 3 4 0	27 10 37 166	25 7 31 139	1 - 1 - 1	2 5 1 2	
-4	5 6 7	22 106 55	-15 14 -87 -50	5	0 2 3	57 105 17	-19 124 -21	0000	5 6 7 8	80 7 5	129 -1 72 2 7 2 -4 2	5 1 2 3	18 -13 10τ -113 t1 -54 74 62	4	1 2 3 0	20 11 20 15	- 30 12 1 - 4	- 2 - 2 3	5 5e e 3e U 35 1 11	-45 38 -51	- 2 - 2 - 2 - 2	1 2 3	11 12 11 93	1 -17 27 84	- 1 2 2 - 2	4 1 2	
555	234	10 76 11 45	-76 11 \$3	-5 -5 -5	4 0 1 2	80 100 83 129	-97 96 -85 -107	1	0 1 2 3	32 33 to 135	11 2 50 2 80 2 -132 -2	4 67 1	$\frac{117}{8} - \frac{110}{12}$ $\frac{12}{12}$ $\frac{12}{234} - \frac{12}{244}$	-4 -4 -4	1 2 4 5	67 41 72 79	-47 -40 -51 65	3 3 3	2 34 3 41 4 49 5 6	- 55 - 14 48 - 21	2- د 3	5 0 1 2	35 8 9 37	4c 8 - 3 42	- 2 - 2	2 3 1. = .	2
-5 -5 -5	1234	14 165 14 14	-139 -21 -21	-5 -5 -5	3 4 5 0	53 14 74 188	-60 -2 55 -186	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7	40 14 217 102	28 -2 -16 -2 -216 -2 105 -2	2 3 4 5	307 298 101 -99 38 -36 55 49	-5 -5 -5	0 1 2	83 11 125	- 57 3 125	- 3 - 3 - 3	0 100 1 63 2 128	-100 53 124	- 3	3012	26 85 63	-27	0	0	
-5 -6 -6	5 1 2 4	98 57 103 22	-87 -54 -109 48	-6	ı L	35 • 17	37	1 -1 -1	8 0 1 2	73 93 52 209	79 -2 65 -2 45 3 -184 3	6 7 1 2	43 -48 63 -63 cc -67 26 -21	0 0	L 1 1 2	21 100 112	111	- 3 - 3 - 3	4 70 5 78 6 36	- 38 71 - 31	- 3 - 3 - 4	340	10 12 131	16 -2 136	0	301	
ņ	L 0	= 16 218	235	0 0 0 0	234	51 12 47 175	- 44 7 59 185	-1 -1 -1	3 4 5 6	159 155 99 83	-160 3 153 3 88 3 -77 3	3 4 5 6	12 - 3 13 2 27 30 46 39	0 0 1	3 5 t	118 38 80 44	-137 -1 -100 -40		3 38 0 257 1 5t 2 81	41 248 50 74		2 3 1 -	114 42	- 36	-1	0120	
0000	1 2 3 4	114 126 29 47	-105 114 -27 -40	0 0 0	5 6 7 8	123 8 8 32	-128 13 -14 45	2 2 2 2 2 2	0123	118 44 103 13	-115 -3 31 -3 -92 -3 5 -3	1 2 3 4	78 71 263 283 13 -4 99 -90	1	2 3 4 5	34 88 20	- 19 - 85 - 24	-4	- 03 3 12 4 11 0 54	-3 2 -49	000	1 2 2	66 11 27	64 16	-2	1	
0000	5 6 7 8	117 38 8 6	107 -40 16 -12	1 1 1 1	1345	72 13 192 120	-73 -23 -190 117	22222	4 5 6 7	11 13 69 7	-13 -3 -9 -3 65 -3 2 4	5671	13 -13 8 1 6 -14 9 9	•1 •1 •1	1 2 3 4	98 78 16 82	-116 -57 -3	0	• • • • L • 23	23	0	54512	57 22 45	- 55 - 19 51	-1	1	

Sundaralingam, 1970) and 5-methyluridine (Hunt & Subramanian, 1969). Of the nitrogen-carbon bond distances, the N(1)-carbon bond lengths are somewhat longer than the values around the N(2) atom. The difference between the bond distances of the two nitrogen atoms may be explained on the basis that the substitution of the phenyl group at the N(1) nitrogen atom will tend to prevent this nitrogen atoms from forming a double bond with adjacent carbon atoms in the ring. The oxygen-carbon bond lengths of 1.201 Å [O(1)-C(1)] and 1.213 Å [O(2)-C(8)] indicate double-bonded character. These values may be compared with 1.209 and 1.211 Å for 10-methylisoalloxazine hydrobromide dihydrate (Trus & Fritchie, 1969), and 1.206 and 1.197 Å for aflatoxin B₂ (Van Soest & Peerdeman)

1970). The apparent bond distances and angles involving the hydrogen atoms are listed in Table 5. All the values except those related to H(4) are reasonable. Fig. 5 shows the shapes and relative magnitudes of the thermal ellipsoids with a probability of 50 per cent for atoms other than hydrogen (Johnson, 1965).

Molecular arrangement

The molecular arrangements in the crystal viewed along the a and the c axes are illustrated in Figs. 6 and 7. The same symbols in both Figures designate the same molecules. The quinazoline rings are superimposed at intervals of 3.5 Å along the b axis, with their long axes approximately parallel to the [001] direction. The molecules are placed in pairs around a centre of sym-

Fig. 4. Bond lengths (Å) and angles (°) of the molecule.

Table 4.	Intramolecular	bond	distances	and	angles	with
	their star	ndard	deviations	5		

C(1) - N(2)	1·372 (5) Å	C(4) - C(5)	1.415 (5) Å
$\Gamma(2) = C(2)$	1.392 (5)	C(5) = C(0)	1.300(5) 1.391(6)
C(7) = C(8)	1.478(5)	N(1) - C(9)	1.455(5)
C(8) - N(1)	1.393 (5)	C(9) - C(10)	1.396 (5)
N(1)-C(1)	1.414 (5)	C(10) - C(11)	1.423(5)
C(1) = O(1)	1.201 (4)	C(11) - C(12)	1.384 (5)
C(8) - O(2)	1.213 (5)	C(12) - C(13)	1.384 (5)
C(2) - C(3)	1.402 (5)	C(13) - C(14)	1.399 (5)
C(3) - C(4)	1.378 (5)	C(14) - C(9)	1.391 (5)
	N(1)-C(1)-N(2)	115·2 (4)°	
	C(1) - N(2) - C(2)	124.6 (4)	
	N(2) - C(2) - C(7)	119.9 (4)	
	C(2) - C(7) - C(8)	119.4 (4)	
	C(7) - C(8) - N(1)	115.4 (4)	
	C(8) - N(1) - C(1)	125.4 (5)	
	N(1) - C(1) - O(1)	122.9 (4)	
	N(2) - C(1) - O(1)	121.8(4) 123.6(4)	
	O(7) - O(8) - O(2)	123.0(4) 121.0(4)	
	N(1) = C(0) = O(2) N(2) = C(2) = C(3)	1210(4) 119.8(4)	
	C(2) = C(2) = C(3)	119.2(4)	
	C(3) - C(4) - C(5)	120.7(4)	
	C(4) - C(5) - C(6)	119.4(4)	
	C(5) - C(6) - C(7)	120.1(5)	
	C(6) - C(7) - C(2)	120.2 (4)	
	C(7) - C(2) - C(3)	120.3 (4)	
	C(6) - C(7) - C(8)	120.4 (4)	
	C(1) - N(1) - C(9)	116.5 (4)	
	C(8) - N(1) - C(9)	118-1 (5)	
	N(1) - C(9) - C(10)	117.9 (4)	
	N(1) - C(9) - C(14)	119.0 (4)	
	C(9) - C(10) - C(11)	116.8 (4)	
	C(10)-C(11)-C(12)	121-2 (4)	
	C(11)-C(12)-C(13)	120.0 (4)	
	C(12) - C(13) - C(14)	120.4(4) 118.4(4)	
	C(13) - C(14) - C(9)	110.4 (4)	
	U(14) - U(9) - U(10)	123.1 (4)	

Table 5. Bond distances and angles involving the hydrogen atoms

H(1) - N(2)	0.91 Å	H(6) - C(10)	1.00 Å
H(2) - C(3)	0.97	H(7) - C(11)	1.11
H(3) - C(4)	0.90	H(8) - C(12)	0.93
H(4) - C(5)	1.19	H(9) - C(13)	1.05
H(5) - C(6)	0.94	H(10)-C(14)	1.01
., .,	H(1) - N(2) - C(1)	113°	
	H(1) - N(2) - C(2)	118	
	H(2) - C(3) - C(2)	131	
	H(2) - C(3) - C(4)	108	
	H(3) - C(4) - C(3)	113	
	H(3) - C(4) - C(5)	127	
	H(4) - C(5) - C(4)	122	
	H(4) - C(5) - C(6)	108	
	H(5) - C(6) - C(5)	123	
	H(5) - C(6) - C(7)	116	
	H(6) - C(10) - C(9)	119	
	H(6) - C(10) - C(11)) 125	
	H(7) - C(11) - C(10)) 110	
	H(7) - C(11) - C(12)) 129	
	H(8) - C(12) - C(11)) 114	
	H(8) - C(12) - C(13)) 126	
	H(9)-C(13)-C(12) 123	
	H(9) - C(13) - C(14)) 114	
	H(10)-C(14)-C(13)) 120	
	H(10)-C(14)-C(9)	120	

metry, connected by two C= $O \cdot \cdot \cdot H$ -N hydrogen bonds with a length of 2.821 Å. The oxygen atom O(1)forms a hydrogen bond with the hydrogen atom at N(2); O(2) is not hydrogen bonded at all. An infrared spectrum also showed the presence of the two kinds of carbonyl group; an absorption band at 1650 cm^{-1} is assigned to the hydrogen-bonded carbonyl, while an absorption band at 1730 cm⁻¹ is assigned to the free carbonyl group. The quinazoline ring atoms of the molecule are nearly coplanar. The best plane through the ten atoms of the quinazoline ring, as calculated by the least-squares method, is defined with respect to the crystallographic axes by the equation

$$0.9841x - 1.5093v + 0.1000z = -0.3147;$$

the distance from this plane to the origin is 0.3147 Å. The average deviation of the ten ring atoms from the plane is 0.03 Å, with the maximum deviation of 0.07 Å for atom C(8); the departures from this plane of the two oxygen atoms attached to the ring are as follows:

$$O(1), 0.173 \text{ Å}; O(2), -0.220 \text{ Å}.$$

Fig. 5. A stereoscopic pair of the molecule and the shape and relative magnitude of the thermal ellipsoids with the probability of 50 per cent for atoms other than hydrogen.

Fig. 6. The crystal structure projected along the *a* axis. The intermolecular short distances are shown by solid lines and hydrogen bonds are shown by dotted lines.

Table	6. In	termolecular	distances	less	than 3.8 Å
i ii iii iv v	$ \begin{array}{c} x\\ 1+x\\ -1+x\\ -x\\ 1-x \end{array} $	y z $y z$ $y z$ $-y -z$ $-y -z$	vi 1- vii viii - ix 1-	-x x -x $-x$	$\begin{array}{cccc} 1-y & -z \\ \frac{1}{2}-y & \frac{1}{2}+z \\ \frac{1}{2}+y & -\frac{1}{2}-z \\ \frac{1}{2}+y & -\frac{1}{2}-z \end{array}$
$C(1^i)-C$	C(2 ^v)	3·531 Å	C(5 ⁱ)-	-N(1 ^{vi})) 3·795 Å
$\tilde{C}(1i) - C$	$C(3^{v})$	3.601	C(5 ⁱ)	-O(1 ^v)	3.556
$C(1^i)-N$	$N(2^{iv})$	3.558	C(5 ⁱ)-	$-O(2^{vi})$	3.763
C(1i) - C	$D(1^{iv})$	3.691	$C(6^i)$ -	-C(6vi)	3.789
$\tilde{C}(1^{i}) - \tilde{C}$	$\tilde{D}(2^{iii})$	3.738	C(6 ⁱ)	-C(7 ^{vi})	3.520
$C(2^i)-C$	C(6 ^{vi})	3.628	C(6 ⁱ)-	$-N(2^{ii})$	3.405
$C(2^i)-N$	N(2 ^v)	3.578	$C(6^i)$ -	-O(1 ^v)	3.729
$C(2^i) - C$	$D(1^{iv})$	3.641	C(7 ⁱ)-	$-C(7^{vi})$	3.781
$C(3^i) - C$	$C(10^{v})$	3.521	C(7 ⁱ)-	$-N(2^v)$	3.634
$C(3^i) - C$	C(12 ^{vii})	3.792	C(8 ⁱ)-	-O(1 ⁱⁱ)	3.545
C(3 ⁱ)-1	N(1 ^v)	3.675	C(11 ⁱ)	$-O(2^{ix})$) <u>3</u> .601
$C(3^{i}) - C(3^{i}) = C(3^{i}) - C(3^{i}) - C(3^{i}) = C(3^{i}) $	$O(1^{iv})$	3.567	C(12 ⁱ)	-C(14v	ⁱⁱⁱ) 3.782
$C(3^{i}) - C(3^{i}) = C(3^{i}) - C(3^{i}) - C(3^{i}) = C(3^{i}) $	$D(1^{v})$	3.700	C(12 ⁱ)	-O(2 ^{ix})) 3.452
C(3i)-C	$D(2^{vi})$	3.715	C(14 ⁱ)	-O(2 ⁱⁱⁱ) 3.350
$C(4^{i})-C(4^{i})$	$C(8^{vi})$	3.555	N(2 ⁱ)-	$-N(2^{iv})$) 3.534
$C(4^{i})-C(4^{i})$	$C(12^{vii})$	3.762	N(2 ⁱ)-	-N(2 ^v)	3.731
C(4i)-0	D(1 ^v)	3.547	N(2 ⁱ)-	-O(1 ^{iv})) 2.821*
C(4i)-0	$O(2^{vi})$	3.355	O(1 ⁱ)-	-O(1 ^{iv})) 3.680
C(5i)-C	C(7 ^{vi})	3.619	O(1 ⁱ)-	-O(2 ⁱⁱⁱ) 3.423
C(5i)-C	C(8vi)	3.483			

* Hydrogen bonding.

In terms of the standard deviations, the deviations of these two oxygen atoms are probably significant. The equation for the best plane representing the benzene ring coordinated to atom N(1) is

0.9400x + 1.4763y - 0.4057z = 4.9630.

The average displacement of the atom from the mean plane is 0.01 Å, with the maximum deviation of 0.03 Å for atom C(9). The benzene ring is rotated by 65.0° from the quinazoline ring because of the steric effect of the two carbonyl groups, the distance O(1)-C(14), O(2)-C(10) being 3.059 and 2.990 Å, respectively. This feature of the benzene ring may be compared with those in phenyl substituted isoxazolins. The dihedral

angle between phenyl plane and isoxazolin plane is 50.4° for *N*-methyl-3-phenyl-4-bromoisoxazolin-5-one (Sabelli & Zanazzi, 1969b), whereas the angles are slightly twisted by 11 to 14° for *N*-methyl-4-phenylisox-

Fig. 7. The crystal structure projected along the c axis. The intermolecular short distances are shown by solid lines and hydrogen bonds are shown by dotted lines.

azolin-5-one (Sabelli & Zanazzi, 1969*a*) and by 2.45° for 3-phenylisoxazolin-5-one (Cannas, Biagini & Marongiu, 1969). The intermolecular distances less than 3.8 Å are listed in Table 6 and shown in Figs. 6 and 7. The shortest intermolecular distances are as follows:

 $\begin{array}{l} C(14^{i})\cdots O(2^{i1i}), \ 3\cdot 350; \ C(4^{i})\cdots O(2^{vi}), \ 3\cdot 355; \\ C(6^{i})\cdots N(2^{ii}), \ 3\cdot 405; \ O(1^{i})\cdots O(2^{i1i}), \ 3\cdot 423; \\ C(12^{i})\cdots O(2^{ix}), \ 3\cdot 452 \ \text{\AA}. \end{array}$

Computation

The main part of the calculations was performed on an IBM 7040 computer with the use of the program ERBR 1 (Van den Hende, 1961) for structure factor and least-squares refinement and the program ERFR2 (Sly, Shoemaker & Van den Hende, 1962) for Fourier summation. The final block-diagonal least-squares refinements were carried out with the program *HBLS* (Ashida, 1964). Thermal ellipsoids were drawn by the CDC 3600 computer at C. Itoh Electronic Computing Service Co. Ltd. using the program *ORTEP* (Johnson, 1965).

The authors are grateful to Drs N. Yoda and M. Kurihara for kindly supplying the specimen and for valuable discussions. Thanks are also due to Mr M. Tanimura for his assistance at the early stage of the X-ray analysis and for valuable discussions.

References

- ASHIDA, T. (1964). HBLS, Block-Diagonal Matrix Least-Squares Refinement Program.
- CANNAS, M., BIAGINI, S. & MARONGIU, G., (1969). Acta Cryst. B25, 1050.

- HUNT, D. J. & SUBRAMANIAN, E. (1969). Acta Cryst. B25, 2144.
- IBALL, J. & MOTHERWELL, W. D. S., (1969). Acta Cryst. B25, 882.
- International Tables for X-ray Crystallography (1962). Vol. III, Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. A Fortran Thermal ' Ellipsoid Plot Program for Crystal Structure Illustrations. Oak Ridge National Laboratory, Tennessee.
- KONNERT, J., KARLE, I. L. & KARLE, J. (1970). Acta Cryst. B26, 770.
- KURIHARA, M. & YODA, N. (1965). Tetrahedron Letters, 30, 2597.
- KURIHARA, M. & YODA, N. (1966). Bull. Chem. Soc. Japan, 39, 1942.
- ROHREV. D. C. & SUNDARALINGAM, M. (1970). Acta Cryst. B26, 546.
- SABELLI, C. & ZANAZZI, P. F. (1969a). Acta Cryst. B25, 182.
- SABELLI, C. & ZANAZZI, P. F. (1969b). Acta Cryst. B25, 192.
- SLY, W. G., SHOEMAKER, D. P. & VAN DEN HENDE, J. H. (1962). ERFR 2 Two- and Three-Dimensional Crystallographic Fourier Summation Program. Massachusetts Institute of Technology & Esso Research and Engineering Company.
- SOEST. T. C. VAN & PEERDEMAN, A. F. (1970). Acta Cryst. B26, 1956.
- TOHYAMA, S., KURIHARA, M., IKEDA, K. & YODA, N. (1967). J. Polymer Sci A-1,5, 2523.
- TRUS, B. L. & FRITCHIE, C. T. JR (1969). Acta Cryst. B25, 1911.
- VAN DEN HENDE, J. H. (1961). ERBR 1 Crystallographic Structure Factor and Least-squares Refinement Program. Esso Research and Engineering Company.
- YODA, N. (1968). Abstr. of Papers, Amer. Chem. Soc. 4th Biennial Polymer Symposium p. 7 (Amherst, Mass.)
- YODA, N. (1969). Encyclopedia of polymer Sci. and Tech. Edited by H. MARK, Vol. 10, pp. 682–690, New York: John Wiley.

Acta Cryst. (1972). B28, 1231

The Crystal Structure of Cs₂MnBr₄

BY J. GOODYEAR, G. A. STEIGMANN AND D. J. KENNEDY Physics Department, The University of Hull, England

(Received 16 August 1971)

The crystal structure of Cs_2MnBr_4 , determined from Weissenberg data, is orthorhombic with a = 10.150 (23), b = 7.806 (11) and c = 13.70 (8) Å. The space group is *Pnma* and Z = 4. The structure is isomorphous with that of Cs_2ZnBr_4 .

Introduction

The material examined in this work was prepared by heating a mixture, consisting of stoichiometric amounts of CsBr and MnBr₂, in a sealed evacuated silica tube until molten at about 650 °C. The specimen was then cooled slowly (10° C per hour) to room temperature and

single crystals suitable for X-ray study were selected from the yellow crystalline mass. Because the material was very unstable in the presence of water vapour, each crystal was sealed in a Lindemann glass tube containing P_2O_5 .

The space lattice and unit-cell dimensions were determined from rotation and Weissenberg photo-